
This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

IDENTIFICATION AND SEPARATION OF THE TWO OVERLAPPING SINGLET $1(\pi, \pi')$ ABSORPTION BANDS OF 1, 4-TETRACENEQUINONE

Takao Itoh^a; Minoru Yamaji^b; Haruo Shizuka^b

^a Department of Chemistry, School of Medicine, Miyazaki Medical University, Miyazaki, Japan

^b Department of Chemistry, Gunma University, Gunma, Japan

Online publication date: 31 May 2001

To cite this Article Itoh, Takao , Yamaji, Minoru and Shizuka, Haruo(2001) 'IDENTIFICATION AND SEPARATION OF THE TWO OVERLAPPING SINGLET $1(\pi, \pi')$ ABSORPTION BANDS OF 1, 4-TETRACENEQUINONE', *Spectroscopy Letters*, 34: 3, 311 – 316

To link to this Article: DOI: 10.1081/SL-100002285

URL: <http://dx.doi.org/10.1081/SL-100002285>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

IDENTIFICATION AND SEPARATION OF THE TWO OVERLAPPING SINGLET $1(\pi, \pi^*)$ ABSORPTION BANDS OF 1,4-TETRACENEQUINONE

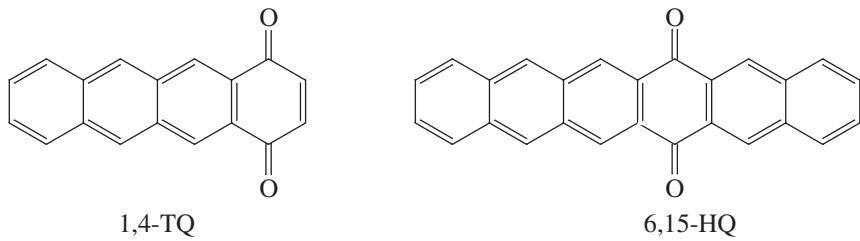
Takao Itoh,^{1,*} Minoru Yamaji,² and Haruo Shizuka²

¹Department of Chemistry, School of Medicine,
Miyazaki Medical University, Kiyotake-cho,
Miyazaki 889-1692, Japan

²Department of Chemistry, Gunma University, Kiryu,
Gunma 376-8515, Japan

ABSTRACT

Absorption and fluorescence spectra of 1,4-tetracenequinone (1,4-TQ) have been measured in solution and the two overlapping $1(\pi, \pi^*)$ absorption bands with comparable intensities were separated. Based on the spectroscopic data, the energy levels of the low-lying $1(\pi, \pi^*)$ excited states of 6,15-hexacenequinone were discussed in relation to those of 1,4-TQ.


Key Words: Singlet (π, π^*) absorption band; Fluorescence spectrum; Excited-state energy levels; 1,4-Tetracenequinone; 6,15-Hexacenequinone.

*Corresponding author.

INTRODUCTION

Para-quinones play an important role in biological systems as well as in functional materials (1-3). A detailed understanding of para-quinone electronic states is the foundation on which an understanding at the molecular level of such a role must rest. It is, therefore, of importance to know the information on the excited-state energy levels of para-quinones, especially for the quantum chemists who are engaged in the calculation of the electronic states of various types of quinones. 1,4-Tetracenequinone (1,4-TQ) is known to emit the S1 fluorescence, and the lowest excited singlet state is reported to be (π, π^*) in nature (2-6). However, not only the fluorescence spectrum, but even the UV-VIS absorption spectrum of this molecule has not been fully investigated, presumably because it is not commercially available and because it shows poor solubility in organic solvents. In the present work we have measured absorption and fluorescence spectra of 1,4-TQ in solution and shown the existence of the two overlapping $1(\pi, \pi^*)$ absorption bands with comparable intensities. These two overlapping absorption bands were separated and the energy levels of the low-lying $1(\pi, \pi^*)$ excited states of 1,4-TQ were discussed in relation to those of 6,15-hexacenequinone (6,15-HQ), see Structure Diagram 1.

Structure Diagram 1.

EXPERIMENTAL

1,4-TQ was synthesized according to the literature (7) and chromatographically purified by passing through an alumina column using ethyl acetate as the solvent. n-Hexane, methylcyclohexane, acetic acid, and methanol, all spectroscopic grade obtained from Wako Pure Chemicals (Tokyo, Japan), were used as the solvents without further purification. Absorption spectra were measured with a Jasco Ubest-50 UV/Vis or a Hitachi model 2000-20 spectrophotometer using 10- and

50-mm pathlength quartz cells. Fluorescence and excitation spectra were measured with a Hitachi F-4010 or a Hitachi 360-10SC fluorescence spectrophotometer. Emission spectra were corrected for the wavelength dependence of the detector response with a hexane solution of N,N-dimethylaminonitrobenzene as the standard. Digital data were analyzed with a Macintosh Quadra 650 microcomputer with a super PC memory (SP32/60).

RESULTS AND DISCUSSION

Figure 1 shows the absorption spectrum of 1,4-TQ in n-hexane at room temperature over the entire UV-VIS range. It is clearly seen that the absorption spectrum consists of three electronic bands with the apparent origins observed at 476 nm ($e = 5 \times 10^3$), 343 nm ($e = 2 \times 10^4$), and 262 nm ($e = 8 \times 10^4 M^{-1} cm^{-1}$), with the molar extinction coefficients in parentheses. The weak bands at 402, 380 and 360 nm seem to be the vibrational bands of the first absorption band starting from 476 nm. However, closer inspection revealed that the weak bands seen in the region 350 - 410 nm belong to another electronic transition which is different from that starting from 476 nm. This will be discussed below.

In Figure 2 (a), we show the emission and absorption spectra of 1,4-TQ in methylcyclohexane at room temperature. The emission spectrum exhibits an expected mirror-image relationship with the lowest-energy absorption band and the emission is safely attributed to the $S1(\pi, \pi^*)$ fluorescence. The two overlapping

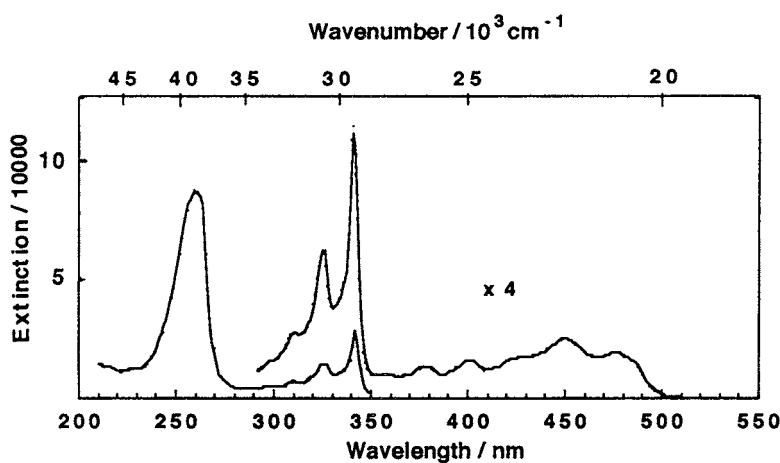
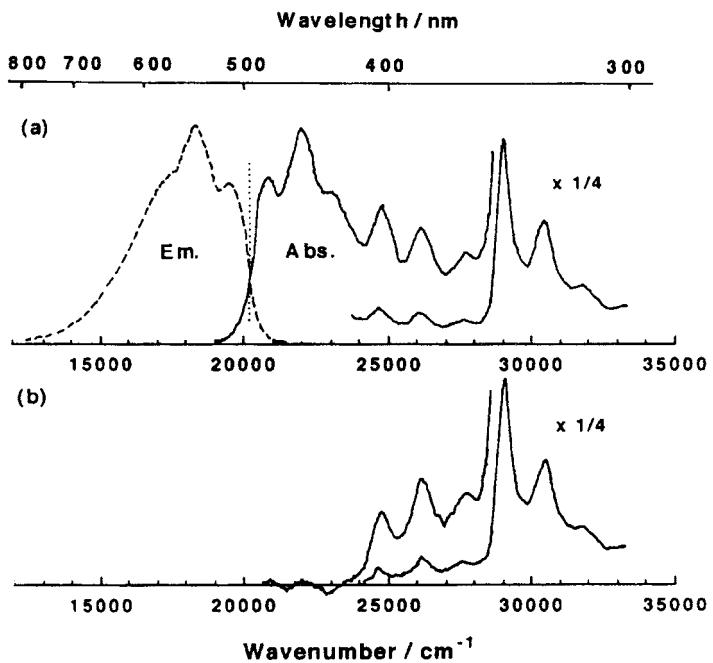



Figure 1. Absorption spectrum of 1,4-tetracenequinone in n-hexane at room temperature.

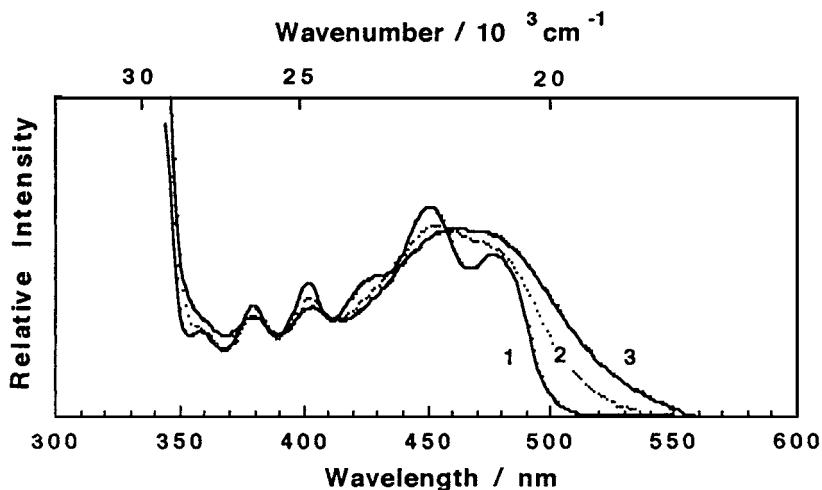


Figure 2. (a) Fluorescence and absorption spectra of 1,4-tetracenequinone in methylcyclohexane at room temperature. (b) The subtracted difference absorption spectrum of 1,4-tetracenequinone in methylcyclohexane at room temperature. (See the text).

absorption bands were separated based on the following procedures: First, the maximum intensities of the absorption spectrum in the 350 - 500 nm region and the corrected fluorescence spectrum were normalized to a common magnitude. Then, the fluorescence spectrum reflected with respect to the line on the crossing point of the normalized fluorescence and absorption spectra, was subtracted from the normalized absorption spectrum to get the difference spectrum in wavenumber scale. The resulting difference absorption spectrum is shown in Figure 2 (b), in which we can see clearly the weak band starting from 400 nm. This weak band is attributed to the $1(\pi, \pi^*)$ band, since the molar extinction coefficient is about 1.5×10^3 M⁻¹ cm⁻¹ in the subtracted absorption spectrum, and since it does not show any blue shift upon the addition of alcohol or acetic acid, as is clearly seen in Figure 3. Thus, there are at least four singlet (π, π^*) excited states for 1,4-TQ in a range 220 ~ 500 nm with the apparent origins at 476 (S1), 400 (S2), 343 (S3), and 262 nm (S4).

It should be noted that the reported absorption spectrum of 6,15-hexacene-quinone (6,15-HQ) exhibits the spectral feature quite similar to that of 1,4-TQ and

Figure 3. Absorption spectra of 1,4-tetracenequinone in n-hexane-acetic acid mixtures with different acetic acid contents at room temperature.

that the absorption spectrum in the 350 - 500 nm region of 6,15-HQ is very likely to consist of the two overlapping absorption bands belonging to the different $1(\pi, \pi^*)$ electronic excited states. In light of the reported spectroscopic data for 6,15-HQ, the apparent origins of the two overlapping $1(\pi, \pi^*)$ absorption bands of 6,15-HQ are seen at 455 and 390 nm. The similarity in the excited-state ordering as well as the energy levels of 1,4-TQ and 6,15-HQ indicates that not only the lowest singlet (π, π^*) level, but also the higher singlet (π, π^*) levels are primarily determined by the size of the larger acene group attached to the central quinoid structure.

REFERENCES

1. Becker R. S., Natarajan L. V. Comprehensive Absorption, Photophysical/Chemical, and Theoretical Study of 2-5-Ring Aromatic Hydrocarbon Diones. *J. Phys. Chem.* 1993; 97: 344-349.
2. Diaz, A. N. Absorption and Emission Spectroscopy and Photochemistry of 1,10-Anthraquinone Derivatives: A Review. *J. Photochem. Photobiol. A* 1990; 53: 141-167.
3. Hartmann H., Lorenz E. Über die Absorptionsspektren der Chinone. *Z. Natur.* 1952; 7a: 360-369.
4. Zander M. Über die Elektronenspektren der Acenchinone. *Ber. Bunsengas.* 1967; 71: 424-426.

5. Novak A., Titz, M., Nepras M. Absorption and Polarization Spectra of Polynuclear p-Quinones. *Collect. Czech. Chem. Commun.* 1974; 38: 1532–1540.
6. Nepras M., Novak A. Phosphorescence and Polarization of Phosphorescence of linear Polynuclear p-Quinones. *Collect. Czech. Chem. Commun.* 1977; 42: 2343–3251.
7. Patney H. K. Synthesis of 2,3-Norbornadienonaphthacene. *J. Org. Chem.*, 1988, 53, 6106–6109.

Received July 1, 2000

Accepted January 3, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL100002285>